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3.1 Introduction
In this chapter, as in the previous chapter, we won’t be concerned with the actual forces that
cause an object to move the way it is moving. We will simply take the motion as given, and
our goal will be to relate positions, velocities, and accelerations as functions of time. However,
since we are now dealing with more general motion in two and three dimensions, we will give
one brief mention of forces:

Motion in more than one dimension

Newton’s second law (for objects with constant mass) is F = ma, where a ≡ dv/dt. This law
(which is the topic of Chapter 4) is a vector equation. (See Appendix A in Section 13.1 for a
review of vectors.) So it really stands for three different equations: Fx = max , Fy = may , and
Fz = maz . In many cases, these three equations are “decoupled,” that is, the x equation has
nothing to do with what is going on in the y and z equations, etc. In such cases, we simply have
three copies of 1-D motion (or two copies if we’re dealing with only two dimensions). So we
just need to solve for the three independent motions along the three coordinate axes.

Projectile motion

The classic example of independent motions along different axes is projectile motion. Projectile
motion is the combination of two separate linear motions. The horizontal motion doesn’t affect
the vertical motion, and vice versa. Since there is no acceleration in the horizontal direction
(ignoring air resistance), the projectile moves with constant velocity in the x direction. And
since there is an acceleration of −g in the vertical direction, we can simply copy the results from
the previous chapter (in particular, Eq. (2.3) with ay = −g) for the motion in the y direction.
We therefore see that if the initial position is (X,Y ) and the initial velocity is (Vx ,Vy ), then the
acceleration components

ax = 0 and ay = −g (3.1)

lead to velocity components

vx (t) = Vx and vy (t) = Vy − gt (3.2)

and position components

x(t) = X + Vx t and y(t) = Y + Vy t − 1
2
gt2. (3.3)

Projectile motion is completely described by these equations for the velocity and position com-
ponents.
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Standard projectile results

The initial velocity V of a projectile is often described in terms of the initial speed v0 (we’ll use a
lowercase v here, since it looks a little nicer) and the launch angle θ with respect to the horizontal.
From Fig. 3.1, the initial velocity components are then Vx = v0 cos θ and Vy = v0 sin θ, so the

v0 cosθ

θ

v0 

v0 sinθ

Figure 3.1

velocity components in Eq. (3.2) become

vx (t) = v0 cos θ and vy (t) = v0 sin θ − gt, (3.4)

and the positions in Eq. (3.3) become (assuming that the projectile is fired from the origin, so
that (X,Y ) = (0,0))

x(t) = (v0 cos θ)t and y(t) = (v0 sin θ)t − 1
2
gt2. (3.5)

A few results that follow from these expressions are that the time to the maximum height, the
maximum height attained, and the total horizontal distance traveled are given by (see Prob-
lem 3.1)

ttop =
v0 sin θ

g
, ymax =

v2
0 sin2 θ

2g
, xmax =

2v2
0 sin θ cos θ

g
=

v2
0 sin 2θ
g

. (3.6)

The last of these results holds only if the ground is level (more precisely, if the projectile returns
to the height from which it was fired). As usual, we are ignoring air resistance.

Motion along a plane

If an object slides down a frictionless plane inclined at angle θ, the acceleration down the plane is
g sin θ, because the component of g (the downward acceleration due to gravity) that points along
the plane is g sin θ; see Fig. 3.2. (There is no acceleration perpendicular to the plane because

θ

θ
g

g cos θ

g sin θ

g sin θ

Figure 3.2

the normal force from the plane cancels the component of the gravitational force perpendicular
to the plane. We’ll discuss forces in Chapter 4.) Even though the motion appears to take place
in 2-D, we really just have a (tilted) 1-D setup. We effectively have “freefall” motion along the
tilted axis, with the acceleration due to gravity being g sin θ instead of g. If θ = 0, then the g sin θ
acceleration along the plane equals 0, and if θ = 90◦ it equals g (downward), as expected.

More generally, if a projectile flies through the air above an inclined plane, the object’s accel-
eration (which is the downward-pointing vector g) can be viewed as the sum of its components
along any choice of axes, in particular the g sin θ acceleration along the plane and the g cos θ
acceleration perpendicular to the plane. This way of looking at the downward g vector can be
very helpful when solving projectile problems involving inclined planes. See Section 13.1.5 in
Appendix A for further discussion of vector components.

Circular motion

Another type of 2-D motion is circular motion. If an object is moving in a circle of radius r with
speed v at a given instant, then the (inward) radial component of the acceleration vector a equals
(see Problem 3.2(a))

ar =
v2

r
. (3.7)

This radially inward acceleration is called the centripetal acceleration. If additionally the object
is speeding up or slowing down as it moves around the circle, then there is also a tangential
component of a given by (see Problem 3.2(b))

at =
dv
dt
. (3.8)

This tangential component is the more intuitive of the two components of the acceleration; it
comes from the change in the speed v, just as in the simple case of 1-D motion. The ar component
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is the less intuitive one; it comes from the change in the direction of v. Remember that the
acceleration a ≡ dv/dt involves the rate of change of the entire vector v, not just the magnitude
v ≡ |v|. A vector can change because its magnitude changes or because its direction changes (or
both). The former change is associated with at, while the latter is associated with ar.

It is sometimes convenient to work with the angular frequency ω (also often called the an-
gular speed or angular velocity), which is defined to be the rate at which the angle θ around the
circle (measured in radians) is swept out. That is, ω ≡ dθ/dt. If we multiply both sides of this
equation by the radius r , we obtain rω = d(rθ)/dt. But rθ is simply the distance s traveled along
the circle,1 so the right-hand side of this equation is ds/dt, which is just the tangential speed v.
Hence rω = v =⇒ ω = v/r . In terms of ω, the radial acceleration can be written as

ar =
v2

r
=

(rω)2

r
= ω2r. (3.9)

Similarly, we can define the angular acceleration as α ≡ dω/dt ≡ d2θ/dt2. If we multiply
through by r , we obtain rα = d(rω)/dt. But from the preceding paragraph, rω is the tangential
speed v. Therefore, rα = dv/dt. And since the right-hand side of this equation is just the
tangential acceleration, we have

at = rα. (3.10)

We can summarize most of the results in the previous two paragraphs by saying that the
“linear” quantities (distance s, speed v, tangential acceleration at) are related to the angular
quantities (angle θ, angular speed ω, angular acceleration α) by a factor of r:

s = rθ, v = rω, at = rα. (3.11)

However, the radial acceleration ar doesn’t fit into this pattern.

3.2 Multiple-choice questions
3.1. A bullet is fired horizontally from a gun, and another bullet is simultaneously dropped from

the same height. Which bullet hits the ground first? (Ignore air resistance, the curvature
of the earth, etc.)

(a) the fired bullet

(b) the dropped bullet

(c) They hit the ground at the same time.

3.2. A projectile is fired at an angle θ with respect to level ground. Is there a point in the motion
where the velocity is perpendicular to the acceleration?

Yes No

3.3. A projectile is fired at an angle θ with respect to level ground. Does there exist a θ such
that the maximum height attained equals the total horizontal distance traveled?

Yes No

3.4. Is the following reasoning correct? If the launch angle θ of a projectile is increased (while
keeping v0 the same), then the initial vy velocity component increases, so the time in the
air increases, so the total horizontal distance traveled increases.

Yes No

1This is true by the definition of a radian. If you take a piece of string with a length of one radius and lay it out along
the circumference of a circle, then it subtends an angle of one radian, by definition. So each radian of angle is worth
one radius of distance. The total distance s along the circumference is therefore obtained by multiplying the number of
radians (that is, the number of “radiuses”) by the length of the radius.
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3.5. A ball is thrown at an angle θ with speed v0. A second ball is simultaneously thrown
straight upward from the point on the ground directly below the top of the first ball’s
parabolic motion. How fast should this second ball be thrown if you want it to collide with
the first ball?

(a) v0/2 (b) v0/
√

2 (c) v0 (d) v0 cos θ (e) v0 sin θ

3.6. A wall has height h and is a distance ℓ away. You wish to throw a ball over the wall with a
trajectory such that the ball barely clears the wall at the top of its parabolic motion. What
initial speed is required? (Don’t solve this from scratch, just check special cases. See
Problem 3.10 for a quantitative solution.)

(a)
√

2gh

(b)
√

4gh

(c)
√
gℓ2/2h

(d)
√

2gh + gℓ2/2h

(e)
√

4gh + gℓ2/2h

3.7. Two balls are thrown with the same speed v0 from the top of a cliff. The angles of their
initial velocities are θ above and below the horizontal, as shown in Fig. 3.3. How much far-

θ

θ

Figure 3.3

ther along the ground does the top ball hit than the bottom ball? Hint: The two trajectories
have a part in common. No calculations necessary!

(a) 2v2
0/g

(b) 2v2
0 sin θ/g

(c) 2v2
0 cos θ/g

(d) 2v2
0 sin θ cos θ/g

(e) 2v2
0 sin2 θ cos2 θ/g

3.8. A racecar travels in a horizontal circle at constant speed around a circular banked track. A
side view is shown in Fig. 3.4. (The triangle is a cross-sectional slice of the track; the car

θ

(side view)

velocity into
   the page

Figure 3.4

is heading into the page at the instant shown.) The direction of the racecar’s acceleration
is

(a) horizontal rightward

(b) horizontal leftward

(c) downward along the plane

(d) upward perpendicular to the plane

(e) The acceleration is zero.

3.9. Which one of the following statements is not true for uniform (constant speed) circular
motion?

(a) v is perpendicular to r.

(b) v is perpendicular to a.

(c) v has magnitude Rω and points in the r direction.

(d) a has magnitude v2/R and points in the negative r direction.

(e) a has magnitude ω2R and points in the negative r direction.

3.10. A car travels around a horizontal circular track, not at constant speed. The acceleration
vectors at five different points are shown in Fig. 3.5 (the four nonzero vectors have equal (top view)

a = 0

(a)

(b)

(c)(d)

(e)

Figure 3.5length). At which of these points is the car’s speed the largest?
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3.11. A bead is given an initial velocity and then circles indefinitely around a frictionless vertical
hoop. Only one of the vectors in Fig. 3.6 is a possible acceleration vector at the given point.

(a)

(b)

(c)

(d)

(e)

(side view)

Figure 3.6

Which one?

3.12. A pendulum is released from rest at an angle of 45◦ with respect to the vertical, as shown
below. Which vector shows the direction of the initial acceleration?

45

(a) (b) (c) (d) (e)

a = 0
a

a
a

a

(side view)

3.13. A pendulum swings back and forth between the two horizontal positions shown in Fig. 3.7.

(side view)

Figure 3.7

The acceleration is vertical (g downward) at the highest points, and is also vertical (up-
ward) at the lowest point.

(a) There is at least one additional point where the acceleration is vertical.

(b) There is at least one point where the acceleration is horizontal.

(c) There is at least one point where the acceleration is zero.

(d) None of the above

3.3 Problems
The first three problems are foundational problems.

3.1. A few projectile results

On level ground, a projectile is fired at angle θ with speed v0. Derive the expressions
in Eq. (3.6). That is, find (a) the time to the maximum height, (b) the maximum height
attained, and (c) the total horizontal distance traveled.

3.2. Radial and tangential accelerations

(a) If an object moves in a circle at constant speed v (uniform circular motion), show
that the acceleration points radially inward with magnitude ar = v2/r . Do this by
drawing the position and velocity vectors at two nearby times and then making use
of similar triangles.

(b) If the object speeds up or slows down as it moves around in the circle, then the
acceleration also has a tangential component. Show that this component is given by
at = dv/dt.

3.3. Radial and tangential accelerations, again

A particle moves in a circle, not necessarily at constant speed. Its coordinates are given
by (x, y) = (R cos θ,R sin θ), where θ ≡ θ(t) is an arbitrary function of t. Take two time
derivatives of these coordinates to find the acceleration vector, and then explain why the
result is consistent with the ar and at magnitudes derived in Problem 3.2.

3.4. Movie replica

(a) A movie director wants to shoot a certain scene by building a detailed replica of the
actual setup. The replica is 1/100 the size of the real thing. In the scene, a person
jumps from rest from a tall building (into a net, so it has a happy ending). If the
director films a tiny doll being dropped from the replica building, by what factor
should the film be sped up or slowed down when played back, so that the falling
person looks realistic to someone watching the movie? (Assume that the motion is
essentially vertical.)
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(b) The director now wants to have a little toy car zoom toward a cliff in the replica (with
the same scale factor of 1/100) and then sail over the edge down to the ground below
(don’t worry, the story has the driver bail out in time). Assume that the goal is to
have the movie viewer think that the car is traveling at 50 mph before it goes over
the cliff. As in part (a), by what factor should the film be sped up or slowed down
when played back? What should the speed of the toy car be as it approaches the cliff
in the replica?

3.5. Doubling gravity

A ball is thrown with speed v at an angle θ with respect to the horizontal ground. At the
highest point in the motion, the strength of gravity is somehow magically doubled. What
is the total horizontal distance traveled by the ball?

3.6. Ratio of heights

From the standard d = gt2/2 expression for freefall from rest, we see that if the falling time
is doubled, the falling distance is quadrupled. Use this fact to find the ratio of the height of
the top of projectile motion (point A in Fig. 3.8) to the height where the projectile would

A

B

Figure 3.8

be if gravity were turned off (point B in the figure). Two suggestive distances are drawn.

3.7. Hitting horizontally

A ball is thrown with speed v0 at an angle θ with respect to the horizontal. It is thrown
from a point that is a distance ℓ from the base of a cliff that has a height also equal to ℓ.
What should θ and v0 be so that the ball hits the corner of the cliff moving horizontally, as
shown in Fig. 3.9?

l

l

θ

v0

Figure 3.9

3.8. Projectile and tube

A projectile is fired horizontally with speed v0 from the top of a cliff of height h. It
immediately enters a fixed tube with length x, as shown in Fig. 3.10. There is friction
between the projectile and the tube, the effect of which is to make the projectile decelerate
with constant acceleration −a (a is a positive quantity here). After the projectile leaves the
tube, it undergoes normal projectile motion down to the ground.

v0

h

l 

x

Figure 3.10

(a) What is the total horizontal distance (call it ℓ) that the projectile travels, measured
from the base of the cliff? Give your answer in terms of x, h, v0, g, and a.

(b) What value of x yields the maximum value of ℓ?

3.9. Car in the mud

A wheel is stuck in the mud, spinning in place. The radius is R, and the points on the
rim are moving with speed v. Bits of the mud depart from the wheel at various random
locations. In particular, some bits become unstuck from the rim in the upper left quadrant,
as shown in Fig. 3.11. What should θ be so that the mud reaches the maximum possible

v

R

θ

Figure 3.11
height (above the ground) as it flies through the air? What is this maximum height? You
may assume v2 > gR.
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3.10. Clearing a wall

(a) You wish to throw a ball to a friend who is a distance 2ℓ away, and you want the ball
to just barely clear a wall of height h that is located halfway to your friend, as shown
in Fig. 3.12. At what angle θ should you throw the ball?

l l

h

θ

Figure 3.12

(b) What initial speed v0 is required? What value of h (in terms of ℓ) yields the minimum
v0? What is the value of θ in this minimum case?

3.11. Bounce throw

A person throws a ball with speed v0 at a 45◦ angle and hits a given target. How much
quicker does the ball get to the target if the person instead throws the ball with the same
speed v0 but at the angle that makes the trajectory consist of two identical bumps, as shown
in Fig. 3.13? (Assume unrealistically that there is no loss in speed at the bounce.)Figure 3.13

3.12. Maximum bounce

A ball is dropped from rest at height h. At height y, it bounces elastically (that is, without
losing any speed) off a board. The board is inclined at the angle (which happens to be 45◦)
that makes the ball bounce off horizontally. In terms of h, what should y be so that the ball
hits the ground as far off to the side as possible? What is the horizontal distance in this
optimal case?

3.13. Falling along a right triangle

In the vertical right triangle shown in Fig. 3.14, a particle falls from A to B either along

A

B

b

a
C

(side view)

Figure 3.14

the hypotenuse, or along the two legs (lengths a and b) via point C. There is no friction
anywhere.

(a) What is the time (call it tH) if the particle travels along the hypotenuse?

(b) What is the time (call it tL) if the particle travels along the legs? Assume that at
point C there is an infinitesimal curved arc that allows the direction of the particle’s
motion to change from vertical to horizontal without any change in speed.

(c) Verify that tH = tL when a = 0.

(d) How do tH and tL compare in the limit b ≪ a?

(e) Excluding the a = 0 case, what triangle shape yields tH = tL?

3.14. Throwing to a cliff

A ball is thrown at an angle θ up to the top of a cliff of height L, from a point a distance L
from the base, as shown in Fig. 3.15.

θ

L

v

L

0

Figure 3.15

(a) As a function of θ, what initial speed causes the ball to land right at the edge of the
cliff?

(b) There are two special values of θ for which you can check your result. Check these.

3.15. Throwing from a cliff

A ball is thrown with speed v at angle θ (with respect to horizontal) from the top of a
cliff of height h. How far from the base of the cliff does the ball land? (The ground is
horizontal below the cliff.)

3.16. Throwing on stairs

A ball is thrown horizontally with speed v from the floor at the top of some stairs. The
width and height of each step are both equal to ℓ.

(a) What should v be so that the ball barely clears the corner of the step that is N steps
down? Fig. 3.16 shows the case where N = 4.

N = 4

l

l

v

d

Figure 3.16 (b) How far along the next step (the distance d in the figure) does the ball hit?
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(c) What is d in the limit N → ∞?

(d) Find the components of the ball’s velocity when it grazes the corner, and then explain
why their ratio is consistent with your answer to part (c).

3.17. Bullet and sphere

A bullet is fired horizontally with speed v0 from the top of a fixed sphere with radius R, as
shown in Fig. 3.17. What is the minimum value of v0 for which the bullet doesn’t touch

v0

R

Figure 3.17

the sphere after it is fired? (Hint: Find y as a function of x for the projectile motion, and
also find y as a function of x for the sphere near the top where x is small; you’ll need to
make a Taylor-series approximation. Then compare your two results.) For the v0 you just
found, where does the bullet hit the ground?

3.18. Throwing on an inclined plane

You throw a ball from a plane inclined at angle θ. The initial velocity is perpendicular to
the plane, as shown in Fig. 3.18. Consider the point P on the trajectory that is farthest

θ

P
v0

Figure 3.18

from the plane. For what angle θ does P have the same height as the starting point? (For
the case shown in the figure, P is higher.) Answer this in two steps:

(a) Give a continuity argument that explains why such a θ should in fact exist.

(b) Find θ. In getting a handle on where (and when) P is, it is helpful to use a tilted
coordinate system and to isolate what is happening in the direction perpendicular to
the plane.

3.19. Ball landing on a block

A block is fired up along a frictionless plane inclined at angle β, and a ball is simultane-
ously thrown upward at angle θ (both β and θ are measured with respect to the horizontal).
The objects start at the same location, as shown in Fig. 3.19. What should θ be in terms of

Figure 3.19

β if you want the ball to land on the block at the instant the block reaches its maximum
height on the plane? (An implicit equation is fine.) What is θ if β equals 45◦? (You might
think that we’ve forgotten to give you information about the initial speeds, but it turns out
that you don’t need these to solve the problem.)

3.20. g’s in a washer

A typical front-loading washing machine might have a radius of 0.3 m and a spin cycle
of 1000 revolutions per minute. What is the acceleration of a point on the surface of the
drum at this spin rate? How many g’s is this equivalent to?

3.21. Acceleration after one revolution

A car starts from rest on a circular track with radius R and then accelerates with constant
tangential acceleration at. At the moment the car has completed one revolution, what
angle does the total acceleration vector make with the radial direction? You should find
that your answer doesn’t depend on at or R. Explain why you don’t have to actually solve
the problem to know this.

3.22. Equal acceleration components

An object moves in a circular path of radius R. At t = 0, it has speed v0. From this point
on, the magnitudes of the radial and tangential accelerations are arranged to be equal at all
times.

(a) As functions of time, find the speed and the distance traveled.

(b) If the tangential acceleration is positive (that is, if the object is speeding up), there is
special value for t. What is it, and why is it special?
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3.23. Horizontal acceleration

A bead is at rest at the top of a fixed frictionless hoop of radius R that lies in a vertical
plane. The bead is given an infinitesimal push so that it slides down and around the hoop.
Find all the points on the hoop where the bead’s acceleration is horizontal. (We haven’t
covered conservation of energy yet, but use the fact that the bead’s speed after it has fallen
through a height h is given by v =

√
2gh.)

3.4 Multiple-choice answers
3.1. c This setup is perhaps the most direct example of the independence of horizontal and

vertical motions, under the influence of only gravity. The horizontal motion doesn’t affect
the vertical motion, and vice versa. The gravitational force causes both objects to have
the same acceleration g downward, so their heights are both given by h − gt2/2. The fired
bullet might travel a mile before it hits the ground, but will still take a time of t =

√
2h/g,

just like the dropped ball.

3.2. Yes At the highest point in the projectile motion, the velocity is sideways, and the
acceleration is (always) downward.

Remark: Since a (which is g = −gŷ) is perpendicular to v at the top of the motion, the component
of a in the direction of v is zero. But this component is what causes a change in the speed (this is
just the at = dv/dt statement). So dv/dt = 0 at the top of the motion. This makes sense because on
the way up, the speed decreases (from a tilted v0 to a horizontal v0 cos θ); a has a component in the
negative v direction. And on the way down, the speed increases (from a horizontal v0 cos θ to a tilted
v0); a has a component in the positive v direction. So at the top of the motion, the speed must be
neither increasing nor decreasing. That is, dv/dt = 0. On the other hand, the vertical vy component
of the velocity steadily decreases (at a rate of −g) during the entire flight, from v0 sin θ to −v0 sin θ.

3.3. Yes If θ is very small, then the projectile barely climbs above the ground, so the total
horizontal distance traveled is much larger than the maximum height. In the other extreme
where θ is close to 90◦, the projectile goes nearly straight up and down, so the maximum
height is much larger than the total horizontal distance. By continuity, there must exist an
intermediate angle for which the maximum height equals the total horizontal distance. As
an exercise, you can show that this angle is given by tan θ = 4 =⇒ θ ≈ 76◦.

3.4. No The reasoning is not valid for all θ. For all θ, the reasoning is correct up until the
last “so.” The time t in the air does indeed increase as θ increases (it equals 2v0 sin θ/g).
However, an additional consequence of increasing θ is that the vx velocity component
(which equals v0 cos θ) decreases. The total horizontal distance equals vx t, so there are
competing effects: increasing t vs. decreasing vx . If we invoke the standard result that the
maximum distance is obtained when θ = 45◦ (see the solution to Problem 3.1), we see that
for θ < 45◦, the increase in t wins and the distance increases; but for θ > 45◦, the decrease
in vx wins and the distance decreases.

3.5. e The vertical velocity component of the first ball is v0 sin θ. If the second ball is thrown
with this speed, then it will always have the same height as a function of time as the first
ball. The balls will therefore collide when the first ball’s horizontal position coincides
with the second ball’s (at the top of the parabolic motion).

Remark: The initial location of the second ball on the ground is actually irrelevant. As long as it
is thrown simultaneously with speed v0 sin θ, it can be thrown from any point below the parabolic
motion of the first ball, and the balls will still always have the same heights at any moment. They
will therefore collide when the first ball’s horizontal position coincides with the second ball’s. If the
collision occurs during the second half of the parabolic motion, the balls will be on their way down.

3.6. d The answer certainly depends on ℓ, because the speed must be very large if ℓ is very
large. So choices (a) and (b) are ruled out. Alternatively, these two choices can be ruled
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out by noting that in the h → 0 limit, you must throw the ball infinitely fast. This is true
because you must throw the ball at a very small angle; so if the speed weren’t large, the
initial vertical velocity would be very small, which means that the top of the parabolic
motion would occur too soon.

In the ℓ → 0 limit, you are throwing the ball straight up. And the initial speed in this
case is the standard v =

√
2gh. (This can be derived in many ways, for example by using

Eq. (2.4).) So the answer must be (d).

3.7. d When the top ball returns to the initial height (the height of the cliff), its velocity
(both magnitude and direction) will be the same as the initial velocity of the bottom ball
(speed v0 at an angle θ below the horizontal). So the trajectory from that point onward
will look exactly the same as the entire trajectory of the bottom ball. So the difference in
the trajectories is just the symmetric parabola that lies above the initial height. And from
Eq. (3.6) we know that the horizontal distance traveled in this part is 2v2

0 sin θ cos θ/g.

Remark: The first three choices can be eliminated by checking limiting cases. The answer must be
zero in both the θ = 0 case (the trajectories are the same) and the θ = 90◦ case (both balls travel
vertically and hence have the same horizontal distance of zero). So the answer must be (d) or (e).
But it takes the above reasoning to show that (d) is correct.

3.8. b The acceleration has magnitude v2/r and points toward the center of the circular
motion. Since the car is traveling in a horizontal circle, the radial direction is to the left.
So the acceleration is horizontal leftward.

Remark: As long as we are told that the racecar is undergoing uniform (constant speed) circular
motion, there is no need to know anything about the various forces acting on the car (which happen
to be gravity, normal, and friction; we’ll discuss forces in Chapter 4). The acceleration for uniform
circular motion, no matter what the cause of the motion, points radially inward with magnitude v2/r ,
period.

3.9. c The velocity v points in the tangential, not radial, direction. The other four statements
are all true.

Remark: If you want to consider non-uniform (that is, changing speed) circular motion, then only
statement (a) is always true. The acceleration can now have a tangential component, which ruins
(b), (d), and (e). And statement (c) is still incorrect.

3.10. c The radial component of the acceleration has magnitude ar = v2/r . So the largest
speed v corresponds to the a with the largest (inward) radial component, which is choice
(c).

Remark: Note that the tangential component of the acceleration, which is at = dv/dt, has nothing to
do with the instantaneous value of v, which is what we’re concerned with in this question. A large
at component (as in choices (a), (b), and (d)) does not imply a large v. On the other hand, a zero ar
component (as in choices (a) and (e)) implies a zero v.

3.11. d The acceleration is the vector sum of the radially inward ar = v2/r component and the
tangentially downward at = g sin θ component, where θ = 0 corresponds to the top of the
hoop. (This is just the component of g that points in the tangential direction.) Only choice
(d) satisfies both of these properties. Choice (e) is the trickiest. The acceleration can’t be
horizontal there, because both ar and at have downward components. There is a point in
each lower quadrant where the acceleration is horizontal, because in the bottom half of the
circle, ar has an upward component which can cancel the downward component of at at
two particular points.

Remark: Since the radial ar = v2/r component always points radially inward, the acceleration vector
in any arbitrary circular motion can never have a radially outward component. This immediately
rules out choices (a) and (c). The borderline case occurs when ar = 0, that is, when a points



52 CHAPTER 3. KINEMATICS IN 2-D (AND 3-D)

tangentially. In this case v = 0, so the bead is instantaneously at rest. But any nonzero speed at all
will cause an inward ar component.

3.12. d The tangential component of the acceleration is at = g sin 45◦. And the radial compo-
nent is ar = v2/r = 0, since v = 0 at the start. No matter where the pendulum is released
from rest, the initial acceleration is always tangential (or zero, if it is “released” when
hanging vertically), because ar = 0 when v = 0.

3.13. b Since the acceleration is negative vertical at the highest points and positive vertical
at the lowest point, by continuity it must have zero vertical component somewhere in
between. That is, it must be horizontal somewhere in between.

The acceleration is never vertical (except at the highest and lowest points), because the ar
and at vectors either both have rightward components, or both have leftward components,
which means that the x component of the total acceleration vector a is nonzero. This is
consistent (if we invoke F = ma) with the fact that the tension in the tilted string has a
nonzero horizontal component (except at the highest points where the tension is zero and
the lowest point where the string is vertical).

3.5 Problem solutions
3.1. A few projectile results

(a) The components of the velocity and position are given in Eqs. (3.4) and (3.5). At
the highest point in the motion, vy equals zero because the projectile is instanta-
neously moving horizontally. So Eq. (3.4) gives the time to the highest point as
ttop = v0 sin θ/g.

(b) First solution: Plugging ttop into Eq. (3.5) gives the maximum height as

ymax = v0 sin θ
(
v0 sin θ

g

)
− 1

2
g

(
v0 sin θ

g

)2

=
v2

0 sin2 θ

2g
. (3.12)

This is just the v2
0/2g result from Problem 2.3, with v0 replaced with the vertical

component of the velocity, v0 sin θ.

Second solution: We can imagine reversing time (or equivalently, looking at the
second half of the motion), in which case the motion is equivalent to (at least as
far as the y motion is concerned) an object dropped from rest. We know that the
time it takes to reach the ground is ttop = v0 sin θ/g, so the distance is gt2

top/2 =
g(v0 sin θ/g)2/2 = v2

0 sin2 θ/(2g), in agreement with Eq. (3.12).

(c) First solution: Because the ground is level, the up and down parts of the motion
are symmetrical, so the total time t in the air is twice the time to the top, that is,
t = 2ttop = 2v0 sin θ/g. From Eq. (3.5) the total horizontal distance traveled is then

xmax = v0 cos θ
(

2v0 sin θ
g

)
=

2v2
0 sin θ cos θ

g
. (3.13)

Second solution: The total time in the air can be determined by finding the value of
t for which y(t) = 0. From Eq. (3.5), we quickly obtain t = 2v0 sin θ/g, as we found
in the first solution. (A second value of t that makes y = 0 in Eq. (3.5) is t = 0, of
course, because the projectile is on the ground at the start.) Note that if the ground
isn’t level, then the up and down parts of the motion are not symmetrical. So this
alternative method of finding the total time (by finding the time for which y takes on
a particular value) must be used.
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Remark: If we use the double-angle formula sin 2θ = 2 sin θ cos θ, the expression for xmax
in Eq. (3.13) can alternatively be written as xmax = v2

0 sin 2θ/g. Since sin 2θ achieves its
maximum value when 2θ = 90◦, this form makes it immediately clear that for a given speed
v0, the maximum horizontal distance is achieved when θ = 45◦. This maximum distance is
v2

0/g. Note that consideration of units tells us that the maximum distance must be proportional
to v2

0/g. But a calculation is necessary to show that the multiplicative factor is 1.

The v2
0 sin 2θ/g form of xmax makes it clear (although it is also clear from the 2v2

0 sin θ cos θ/g
form) that the distance is symmetric on either side of 45◦. That is, 46◦ yields the same distance
as 44◦, and 80◦ yields the same distance as 10◦, etc.

3.2. Radial and tangential accelerations

(a) The position and velocity vectors at two nearby times are shown in Fig. 3.20. Their

r1

r2

v1

v2

Figure 3.20

differences, ∆r ≡ r2 − r1 and ∆v ≡ v2 − v1, are shown in Fig. 3.21. (See Figs. 13.9

r1

r

∆r

2

v1v

∆v

2
θ

θ

Figure 3.21

and 13.10 in Appendix A for a comment on this ∆v.) The angle between the v’s is
the same as the angle between the r’s, because each v makes a right angle with the
corresponding r. Therefore, the triangles in Fig. 3.21 are similar, and we have

|∆v|
v
=
|∆r|

r
, (3.14)

where v ≡ |v| and r ≡ |r|. Our goal is to obtain an expression for a ≡ |a| ≡ |∆v/∆t |.
The ∆t here suggests that we should divide Eq. (3.14) through by ∆t. This gives
(using v ≡ |v| ≡ |∆r/∆t |)

1
v

�����∆v
∆t

����� = 1
r

�����∆r
∆t

����� =⇒ |a|
v
=
|v|
r
=⇒ a =

v2

r
, (3.15)

as desired. We have assumed that ∆t is infinitesimal here, which allows us to convert
the above quotients into derivatives.
The direction of the acceleration vector a is radially inward, because a ≡ dv/dt has
the same direction as dv (or ∆v), which points radially inward (leftward) in Fig. 3.21
(in the limit where θ is very small).

Remark: The a = v2/r result involves the square of v. That is, v matters twice in a. The
physical reason for this is the following. The first effect is that the larger v is, the larger the
∆v is for a given angle θ in Fig. 3.21 (because the triangle is larger). The second effect is that
the larger v is, the faster the object moves around in the circle, so the larger the angle θ is (and
hence the larger the ∆v is) for a given time ∆t. Basically, if v increases, then the v triangle in
Fig. 3.21 gets both taller and wider. Each of these effects is proportional to v, so for a given
time ∆t the change in velocity ∆v is proportional to v2, as we wanted to show.

(b) If the speed isn’t constant, then the radial component ar still equals v2/r , because
the velocity triangle in Fig. 3.21 becomes the triangle shown in Fig. 3.22 (for the

v1

v

∆v = v2-v1

2

θ

length 
 = v2-v1

Figure 3.22

case where the speed increases, so that v2 is longer than v1). The lower part of this
triangle is exactly the same as the triangle in Fig. 3.21 (or at least it would be, if
we had drawn v1 with the same length). So all of the preceding reasoning carries
through, leading again to ar = v2/r . The v here could technically be either v1 or v2.
But in the ∆t → 0 limit, the angle θ goes to zero, and both v1 and v2 are equal to the
instantaneous speed v.
To obtain the tangential component at, we can use the upper part of the triangle in
Fig. 3.22. This is a right triangle in the ∆t → 0 limit, and it tells us that at (which is
the vertical component in Fig. 3.22) is

at =
v2 − v1

∆t
≡ ∆v
∆t
−→ dv

dt
, (3.16)

as desired.



54 CHAPTER 3. KINEMATICS IN 2-D (AND 3-D)

Remark: A word about the placement of absolute value signs (“| |”): The tangential com-
ponent of a is at = dv/dt ≡ d |v|/dt, while the complete vector a is a ≡ dv/dt, which has
magnitude a = |a| = |dv|/dt (which equals a =

√
a2

r + a2
t ). The placement of the abso-

lute value signs is critical, because d |v|, which is the change in the magnitude of the velocity
vector, is not equal to |dv|, which is the magnitude of the change in the velocity vector. The
former is associated with the left leg of the right triangle in Fig. 3.22, while the latter is asso-
ciated with the hypotenuse. The disparity between d |v| and |dv| is most obvious in the case
of uniform circular motion, where we have d |v| = 0 and |dv| , 0; the speed is constant, but
the velocity is not. (The one exception to the d |v| , |dv| statement occurs when the speed is
instantaneously zero, so that ar = 0. Since the acceleration is only tangential in this case, we
have d |v| = |dv|.)

3.3. Radial and tangential accelerations, again

When taking the time derivatives, we must be careful to use the chain rule and the prod-
uct rule. Starting with (x, y) = R(cos θ,sin θ), the velocity is found by taking one time
derivative:

( ẋ, ẏ) = R(−θ̇ sin θ, θ̇ cos θ), (3.17)

where the θ̇’s come from the chain rule, because θ is a function of t. Another time deriva-
tive (using the chain rule again, along with the product rule) yields the acceleration:

( ẍ, ÿ) = R(−θ̈ sin θ − θ̇2 cos θ, θ̈ cos θ − θ̇2 sin θ). (3.18)

If we group the θ̈ terms together, and likewise the θ̇2 terms, we find

( ẍ, ÿ) = Rθ̈(− sin θ, cos θ) + Rθ̇2(− cos θ, − sin θ). (3.19)

The first vector here is the tangential acceleration vector, because the magnitude is Rθ̈ ≡
Rα = at, where we have used the fact that (− sin θ,cos θ) is a unit vector. And this vector
(− sin θ,cos θ) points in the tangential direction, as shown in Fig. 3.23.

cos θ

cos θ

θ

θ

sin θ

sin θ
(-sin θ, cos θ)

(-cos θ, -sin θ)

Figure 3.23

The second vector in Eq. (3.19) is the radial acceleration vector, because the magnitude is
Rθ̇2 ≡ Rω2 = R(v/R)2 = v2/R = ar, where we have used the fact that (− cos θ,− sin θ) is
a unit vector. And this vector (− cos θ,− sin θ) points radially inward.

Units: The units of all of the components in Eq. (3.19) are all correctly m/s2, because both θ̈ and θ̇2

have units of 1/s2. If you forgot to use the chain rule and omitted the θ̇’s, the units wouldn’t work
out.

Limits: If θ̈ = 0 (uniform circular motion), then the first vector in Eq. (3.19) is zero, so the accelera-
tion is only radial; this is correct. And if θ̇ = 0 (the object is instantaneously at rest), then the second
vector in Eq. (3.19) is zero, so the acceleration is only tangential; this is also correct.

3.4. Movie replica

(a) If the movie were played back at normal speed, the person would appear to fall
unnaturally fast. To see why, let’s say that the doll falls for 1 s in the replica, which
means that it falls a distance of 4.9 m (from d = gt2/2, and we’re neglecting air
resistance, as usual). Since the scale factor is 100, someone watching the movie
would think that the person falls 490 m in 1 s. This would look very strange, because
it is far too large a distance; an object should fall only 4.9 m in 1 s. An object would
fall 490 m in 1 s on a planet that has g = 980 m/s2, but not on the earth.
How long does it take something to fall 490 m on the earth? From d = gt2/2, we
obtain t = 10 s. So the answer to this problem is that the movie should be slowed
down by a factor of 10 when played back, so that the movie watcher sees a 490 m
fall take the correct time of 10 s.

Remark: The factor of 10 here arises because it is the square root of the scale factor, 100.
Mathematically, the 10 comes from the fact that the units of g involve s2, which leads to the
t2 in the expression d = gt2/2. A factor of 10 in the time then leads to the desired factor of
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102 = 100 in the distance. But more intuitively, the factor of 10 arises in the following way.
If we don’t scale the time at all, then as we saw above, we basically end up on a planet with
g = 980 m/s2. If we then slow down the movie by a factor of 10, this decreases g by a factor
of 102, because it causes the falling object to take 10 times as long to fall a given distance,
at which point it is going only 1/10 as fast. So the factor of 10 matters twice. The rate of
change ∆v/∆t of the velocity (that is, the acceleration) is therefore only (1/10)/10 = 1/100
of the g = 980 m/s2 value that it would have been, so we end up with the desired g value of
9.8 m/s2.

(b) The vertical motion must satisfy the same conditions as in part (a), because it is
unaffected by the horizontal motion. So we again need to slow down the playback
by a factor of 10.
We want the speed of the car to appear to be 50 mph. This means that if the movie
weren’t slowed down by the required factor of 10, then the car’s speed in the movie
would appear to be 500 mph. Due to the scale factor of 100, this would then require
the speed in the replica to be 5 mph. So 5 mph is the desired answer.
Said in an equivalent way, starting from the replica: A speed of 5 mph in the replica
translates to a speed of 500 mph in an unmodified movie, due to the scale factor of
100. But then slowing down the movie by a factor of 10 brings the apparent speed
down to the desired 50 mph.

3.5. Doubling gravity

The horizontal distance traveled during the upward part of the motion is half the total dis-
tance of normal projectile motion. Therefore, from Eq. (3.6) the distance traveled during
the upward motion is (v2

0/g) sin θ cos θ. We must now find the horizontal distance trav-
eled during the downward motion. Since the horizontal velocity is constant throughout the
entire motion, we just need to get a handle on the time of the downward part.

The time of the upward part is given by h = gt2
u/2, where h is the maximum height, be-

cause we can imagine running time backwards, in which case the ball is dropped from
rest, as far as the vertical motion is concerned. (The height h equals (v2

0/2g) sin2 θ from
Eq. (3.6), but we won’t need to use this.) The time of the downward part is given by
h = (2g)t2

d/2, because gravity is doubled. Therefore td = tu/
√

2. So the horizontal dis-
tance traveled during the downward motion is 1/

√
2 times the horizontal distance traveled

during the upward motion. The total distance is therefore

d =
v2

0 sin θ cos θ
g

(
1 +

1
√

2

)
. (3.20)

3.6. Ratio of heights

The given gt2/2 expression holds for an object dropped from rest. But it is also a valid
expression for the distance fallen relative to where the object would be if gravity were
turned off. Mathematically, this is true because in Eq. (3.3), Y + Vy t is the height of the
object in the absence of gravity, and gt2/2 is what is subtracted from this.

The two vertical distances we drew in Fig. 3.8 are the distances fallen relative to the zero-
gravity line of motion (the dotted line). Since the time of the entire projectile motion is
twice the time to the top, the ratio of these two vertical distances is 22 = 4 (hence the
d and 4d labels in Fig. 3.24). This figure contains two similar right triangles, with one

d

B

A

4d

h

Figure 3.24

being twice the size of the other. Comparing the vertical legs of each triangle tells us that
4d/(h + d) = 2. This yields h = d, which means that point A has half the height of point
B. The answer to the problem is therefore 1/2.

3.7. Hitting horizontally

If t is the time of flight, then we have three unknowns: t, v0, and θ. And we have three
facts:
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• The vertical speed is zero at the top, so v0 sin θ − gt = 0 =⇒ t = v0 sin θ/g.

• The horizontal distance is ℓ, so (v0 cos θ)t = ℓ.

• The vertical distance is ℓ, so (v0 sin θ)t − gt2/2 = ℓ.

Plugging the value of t from the first fact into the other two gives

v2
0 sin θ cos θ

g
= ℓ and

v2
0 sin2 θ

2g
= ℓ. (3.21)

Dividing the second of these equations by the first gives

sin θ
2 cos θ

= 1 =⇒ tan θ = 2 =⇒ θ ≈ 63.4◦. (3.22)

(What we’ve done here is basically find the firing angle of a projectile that makes the
maximum height be half of the total range.) This value of θ corresponds to a 1-2-

√
5 right

triangle, which yields sin θ = 2/
√

5. The second of the equations in Eq. (3.21) (the first
would work just as well) then gives

v2
0

2g

(
2
√

5

)2

= ℓ =⇒ v0 =

√
5gℓ
2
. (3.23)

3.8. Projectile and tube

(a) From the standard v2
f = v2

i + 2ad formula, the speed of the projectile when it exits
the tube is v =

√
v2

0 − 2ax. You can also obtain this by using v = v0 − at, where t
is found by solving v0t − at2/2 = x. This quadratic equation has two solutions, of
course. You want the “−” root. (What is the meaning of the “+” root?)
Since the projectile motion has zero initial vy , the time to reach the ground is given
by gt2/2 = h =⇒ t =

√
2h/g. The horizontal distance traveled in the air is vt, but

we must add on the length of the tube to get the total distance ℓ. So we have

ℓ = x + vt = x +
√
v2

0 − 2ax

√
2h
g
. (3.24)

(b) Looking at the two terms in Eq. (3.24), we see that we have competing effects of
x. Increasing x increases ℓ by having the projectile motion start farther to the right.
But increasing x also decreases the projectile motion’s initial speed and hence its
horizontal distance. Maximizing the ℓ in Eq. (3.24) by taking the derivative with
respect to x gives

0 =
dℓ
dx
= 1 +

1
2

−2a√
v2

0 − 2ax

√
2h
g

=⇒
√
v2

0 − 2ax = a

√
2h
g

=⇒ x =
v2

0

2a
− ah

g
. (3.25)

Both terms here correctly have dimensions of length. This result for the optimal
value of x is smaller than v2

0/2a, as it should be, because otherwise the projectile
would reach zero speed inside the tube (since v =

√
v2

0 − 2ax) and never make it out.
However, we aren’t quite done, because there are two cases to consider. To see why,
note that if a = v0

√
g/2h, then the x in Eq. (3.25) equals zero. So Eq. (3.25) is
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applicable only if a ≤ v0
√
g/2h. If a ≥ v0

√
g/2h, then Eq. (3.25) yields a negative

value of x, which isn’t physical. The optimal x in the a ≥ v0
√
g/2h case is therefore

simply x = 0. Physically, if a is large then any nonzero value of x will hurt ℓ (by
slowing down the initial projectile speed) more than it will help (by adding on the
“head start” distance of x). Mathematically, in this case the extremum of ℓ occurs
at the boundary of the allowed values of x (namely, x = 0), as opposed to at a local
maximum; a zero derivative therefore isn’t relevant.

Limits: If a → 0 then Eq. (3.25) gives x → ∞, which is correct. We can make the tube be
very long, and the projectile will keep sliding along; the projectile motion at the end is largely
irrelevant. We also see that the optimal x increases with v0 and g, and decreases with a and h.
You should convince yourself that these all make sense.

3.9. Car in the mud

At the instant the mud leaves the wheel, it is at height R + R sin θ above the ground. It
then rises an extra height of h = (v cos θ)2/2g during its projectile motion. This is true
because the initial vy is v cos θ (because the initial velocity makes an angle of 90◦ − θ with
respect to the horizontal), so the time to the highest point is (v cos θ)/g; plugging this into
h = (v cos θ)t − (1/2)gt2 gives h = (v cos θ)2/2g. The total height above the ground at
the highest point is therefore

H = R + R sin θ +
v2 cos2 θ

2g
. (3.26)

Maximizing this by taking the derivative with respect to θ gives

R cos θ − v2

g
sin θ cos θ = 0. (3.27)

Since cos θ is a factor of this equation, we see that there are two solutions. One is cos θ =
0 =⇒ θ = π/2, which corresponds to the top of the wheel. This is the maximum height if
v2 < gR, because in this case the best the mud can do is stay in contact with the wheel the
whole time. (After learning about forces in Chapter 4, you can show that if v2 < gR then
the normal force between the wheel and the mud is always nonzero, so the mud will never
fly off the wheel.) But we are assuming v2 > gR, so we want the other solution,

sin θ =
gR
v2 . (3.28)

Note that gR/v2 is less than 1 if v2 > gR, so such a θ does indeed exist. (For v2 = gR we
correctly obtain θ = π/2.) Plugging Eq. (3.28) into Eq. (3.26) gives a maximum height of

Hmax = R + R sin θ +
v2

2g
(1 − sin2 θ)

= R + R
(
gR
v2

)
+

v2

2g
*,1 −

(
gR
v2

)2+-
= R +

gR2

2v2 +
v2

2g
. (3.29)

All three terms here correctly have dimensions of length. This result is valid if v2 ≥ gR.
If v2 ≤ gR, then the maximum height (at the top of the wheel) is 2R.

Limits: If v is large (more precisely, if v2 ≫ gR), then Eq. (3.29) gives Hmax ≈ R + v2/2g. From
Eq. (3.28) the mud leaves the wheel at θ ≈ 0 (the side point) and travels vertically an extra height
of v2/2g, which is the standard height achieved in vertical projectile motion. If v2 ≈ gR, then
Eq. (3.29) gives Hmax ≈ 2R. The mud barely leaves the wheel at the top, so the maximum height is
simply 2R. It doesn’t make sense to take the small-v limit (more precisely, v2 ≪ gR) of Eq. (3.29),
because this result assumes v2 > gR.
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3.10. Clearing a wall

(a) The unknowns in this problem are v0 and θ. Problem 3.1(b) gives the maximum
height of a projectile, so we want

h =
v2

0 sin2 θ

2g
. (3.30)

And Problem 3.1(c) gives the range of a projectile, so we want

2ℓ =
2v2

0 sin θ cos θ
g

. (3.31)

Dividing Eq. (3.30) by Eq. (3.31) gives

h
ℓ
=

sin θ
2 cos θ

=⇒ tan θ =
2h
ℓ
. (3.32)

This means that you should pretend that the wall is twice as tall as it is, and then aim
for the top of that imaginary wall.

Limits: If h → 0 then θ → 0. And if h → ∞ then θ → 90◦. Both of these limits make sense.

(b) First solution: If tan θ = 2h/ℓ, then drawing a right triangle with legs of length ℓ
and 2h tells us that sin θ = 2h/

√
4h2 + ℓ2. So Eq. (3.30) gives

h =
v2

0

2g
· 4h2

4h2 + ℓ2
=⇒ v2

0 = g

(
4h2 + ℓ2

2h

)
. (3.33)

(Eq. (3.31) would give the same result.) We want to minimize this function of h.
Setting the derivative equal to zero gives (ignoring the denominator of the derivative,
since we’re setting the result equal to zero)

0 = 2h(8h) − (4h2 + ℓ2) · 2 =⇒ 0 = 4h2 − ℓ2 =⇒ h =
ℓ

2
. (3.34)

If h takes on this value, then Eq. (3.32) gives tan θ = 2(ℓ/2)/ℓ = 1 =⇒ θ = 45◦.
You should convince yourself why this result is consistent with the familiar fact that
θ = 45◦ gives the maximum range of a projectile.

Limits: The v0 in Eq. (3.33) correctly goes to infinity as h → ∞. It also goes to infinity as
h → 0. This makes sense because h ≈ 0 corresponds to a nearly horizontal “line drive.” If
the speed weren’t large, then the ball would quickly hit the ground (since the initial vy would
be very small). Note that since v0 → ∞ for both h → ∞ and h → 0, a continuity argument
implies that v0 achieves a minimum for some intermediate value of h. But it takes a little work
to show that this h equals ℓ/2.

Second solution: A somewhat quicker way of obtaining v0 (without first obtaining
θ in Eq. (3.32)) is the following. Let t be the time to the top of the motion. Then
the horizontal component of v0 is ℓ/t, and the vertical component is gt (because vy
is zero at the top). From the second half of the motion, we also know that gt2/2 =
h =⇒ t2 = 2h/g. So

v2
0 = v2

x + v
2
y =
ℓ2

t2 + g
2t2 =

ℓ2

2h/g
+ g2 2h

g
= g

(
ℓ2 + 4h2

2h

)
, (3.35)

in agreement with Eq. (3.33).
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3.11. Bounce throw

From Eq. (3.6) we know that the total horizontal distance traveled for a 45◦ throw is v2
0/g.

(As always, we are ignoring air resistance, which is actually a pretty lousy approximation
for thrown balls.) For the bounce throw, each of the two bumps has a horizontal span of
v2

0/2g. The throwing speed is still v0, so we want the sin 2θ factor in Eq. (3.6) to be 1/2.
Hence 2θ = 30◦ =⇒ θ = 15◦. The (constant) horizontal component of the velocity is
therefore v0 cos 15◦ for the entire duration of the bounce throw, as opposed to v0 cos 45◦

for the original throw. Since the time of flight is inversely proportional to the horizontal
speed, the total time for the bounce throw is (v0 cos 45◦)/(v0 cos 15◦) ≈ 0.73 as long as
the total time for the original throw.

Remarks: Since cos 15◦ = cos(45◦ − 30◦), you can use the trig sum formula for cosine to show that
the exact answer to this problem is 2/(

√
3 + 1), which can be written as

√
3 − 1.

In real life, air resistance makes the trajectory be nonparabolic, and there is also an abrupt decrease
in speed at the bounce, due to friction with the ground. But it is still possible for a bounce throw
to take less time than the no-bounce throw. This is particularly relevant in baseball games. If a
player is making a long throw from the outfield (or even from third base to first base if the player
is off balance and the throwing speed is low), then a bounce throw is desirable. The advantage of
throwing in a more direct line can outweigh the disadvantage of the loss in speed at the bounce. But
the second bump in the throw needs to be relatively small.

3.12. Maximum bounce

The time it takes the ball to fall the distance h − y to the board is given by gt2/2 =
h − y =⇒ t =

√
2(h − y)/g. The speed at this time is v = gt =

√
2g(h − y). (This is

just the standard vf =
√

2ad result that follows from Eq. (2.4) when vi = 0.) Since the
collision is elastic, this is also the horizontal speed vx right after the bounce.

The time to fall the remaining distance y to the ground after the horizontal bounce is given
by gt2/2 = y =⇒ t =

√
2y/g. The horizontal distance traveled is then

d = vx t =
√

2g(h − y)

√
2y
g
= 2

√
y(h − y). (3.36)

Our goal is therefore to maximize the function hy− y2. Setting the derivative equal to zero
gives 0 = h − 2y =⇒ y = h/2. So the board should be at the halfway point. The desired
horizontal distance is then d = 2

√
(h/2)(h − h/2) = h.

Limits: The distance d in Eq. (3.36) goes to zero for both y = 0 and y = h. These limits make sense.
In the first case, the board is on the ground, so there is no time after the collision for the ball to travel
any horizontal distance. In the second case, the board is located right where the ball is released, so
the horizontal speed after the “collision” is zero, and the ball falls straight down.

3.13. Falling along a right triangle

(a) If θ is the inclination angle of the hypotenuse, then the component of the gravitational
acceleration along the hypotenuse is g sin θ, where sin θ = b/

√
a2 + b2. Using d =

at2/2 (this a is the acceleration, not the length of the lower leg!), the time to travel
along the hypotenuse is given by

√
a2 + b2 =

1
2

(
g

b
√

a2 + b2

)
t2
H =⇒ tH =

√
2(a2 + b2)

gb
. (3.37)

Limits: If a → ∞ or b→ ∞ or b→ 0, then tH → ∞, which makes sense.

(b) The time to fall to C is given by gt2
1/2 = b =⇒ t1 =

√
2b/g. The speed at C is then

gt1 =
√

2gb. The particle then travels along the bottom leg of the triangle at this
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constant speed, which takes a time of t2 = a/
√

2gb. The total time is therefore

tL = t1 + t2 =

√
2b
g
+

a√
2gb
. (3.38)

Limits: Again, if a → ∞ or b→ ∞ or b→ 0, then tL → ∞.

(c) If a = 0 then both tH and tL reduce to
√

2b/g.

(d) If b ≪ a then tH ≈
√

2a/
√
gb (the b2 term in Eq. (3.37) is negligible), and tL ≈

a/
√

2gb (the first term in Eq. (3.38) is negligible). So in this limit we have

tH ≈ 2tL. (3.39)

This makes sense for the following reason. In the journey along the legs, the particle
is moving at the maximum speed of

√
2gb for essentially the entire time. But in

the journey along the hypotenuse, the particle has the same maximum speed (as you
can show with kinematics; this also follows quickly from conservation of energy,
discussed in Chapter 5), and the average speed is half of the maximum speed, because
the acceleration is constant.

(e) Setting the tH in Eq. (3.37) equal to the tL in Eq. (3.38) gives√
2(a2 + b2)

gb
=

√
2b
g
+

a√
2gb

=⇒ 2
√

a2 + b2 = 2b + a

=⇒ 4(a2 + b2) = 4b2 + 4ba + a2 =⇒ 3a2 = 4ba

=⇒ a =
4b
3
. (3.40)

So the two times are equal if we have a 3-4-5 right triangle, with the bottom leg being
the longer one.

Remarks: Without doing any calculations, the following continuity argument demonstrates
that there must exist a triangle shape for which tH equals tL. We found in part (d) that tH > tL
(by a factor of 2) when b ≪ a. But tH < tL when a ≪ b. This can be seen by noting
that tH = tL when a = 0 and that a appears only at second order in the expression for tH
in Eq. (3.37), but at first order in the expression for tL in Eq. (3.38). When a is small, the
second-order a2 term is much smaller than the first-order a term, making tH smaller than tL.
The preceding tH > tL and tH < tL inequalities imply, by continuity, that there must exist
some relation between a and b for which the two times are equal.
Note that since the times are equal in both the 3-4-5 case and the a = 0 case, the ratio R ≡
tH/tL must achieve an extremum (it’s a minimum) somewhere in between. As an exercise,
you can show that this occurs when a = b/2. The associated minimum is R = 2/

√
5 ≈ 0.89.

The plot of R vs. x ≡ a/b is shown in Fig. 3.25. In terms of x, you can show that R(x) =

0 1 2 3 4 5 6

0.5

1.0

1.5

2.0

x

R

Figure 3.25

2
√

1 + x2/(2+ x). The value x ≡ a/b = 0 corresponds to a tall thin triangle (with R = 1), and
x ≡ a/b = ∞ corresponds to a wide squat triangle (with R = 2). You should think physically
about the competing effects that make tH larger than tL (that is, R > 1) in some (most) cases,
but smaller in others.

3.14. Throwing to a cliff

(a) If t is the time to hit the edge of the cliff, then the standard expressions for the
horizontal and vertical positions yield

L = (v0 cos θ)t,

L = (v0 sin θ)t − gt2

2
. (3.41)
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Solving for t in the first equation and plugging the result into the second equation
gives

L = v0 sin θ
(

L
v0 cos θ

)
− g

2

(
L

v0 cos θ

)2

= L tan θ − gL2

2v2
0 cos2 θ

. (3.42)

Solving for v0 yields

v0 =

√
gL

2 cos θ(sin θ − cos θ)
. (3.43)

(b) If θ → 90◦ then cos θ → 0, so v0 → ∞. This makes sense, because the ball is
essentially thrown straight up. The horizontal component of the velocity is very
small, so the ball needs to spend a very long time in the air. It must therefore have a
very large initial speed.
If θ → 45◦ then sin θ → cos θ, so v0 → ∞. This also makes sense, because the ball
is aimed right at the corner of the cliff, so if it isn’t thrown infinitely fast, it will have
time to fall down relative to the “zero-gravity” straight-line path and hence hit below
the corner.

Remark: Since the speed v0 goes to infinity for both θ → 45◦ and θ → 90◦, by continuity it
must achieve a minimum value for some angle in between. As an exercise, you can show that
v0 is minimum when θ = 3π/8 = 67.5◦, which happens to be exactly halfway between 45◦

and 90◦.

3.15. Throwing from a cliff

With y = 0 taken to correspond to the base of the cliff, the height of the ball as a function
of time is y(t) = h + (v sin θ)t − gt2/2. The ball hits the ground when this equals zero,
which gives

g

2
t2 − (v sin θ)t − h = 0 =⇒ t =

v sin θ +
√
v2 sin2 θ + 2gh

g
, (3.44)

where we have chosen the “+” root because t must be positive. (The “−” root corresponds
to the negative time at which the parabolic motion would hit y = 0 if it were extended
backward through the cliff.) The desired horizontal position at this time is

x = (v cos θ)t =
v cos θ

g

(
v sin θ +

√
v2 sin2 θ + 2gh

)
. (3.45)

Limits: If θ = π/2 then x = 0, of course, because the ball is thrown straight up. If θ = 0 then
x = v

√
2h/g. This is correct because the ball is fired horizontally, so the time to fall the height h is

the standard
√

2h/g. And since the horizontal speed is always v, the horizontal distance is v
√

2h/g.

If h = 0 then x = (2v2/g) sin θ cos θ, which is the standard projectile range on flat ground. If h → ∞
then we can ignore the v2 sin2 θ under the square root, and we end up with

x ≈ v2 sin θ cos θ
g

+ (v cos θ)

√
2h
g
. (3.46)

The first term here is the horizontal distance traveled by the time the ball reaches the highest point
in its motion. The second term is the horizontal distance traveled during the time it takes to fall a
height h from the highest point (because

√
2h/g is the time it takes to fall a height h).

However, the reason why Eq. (3.46) isn’t exact is that after falling a distance h from the highest point,
the ball hasn’t quite reached the ground, because there is still an extra distance to fall, corresponding
to the initial gain in height from the top of the cliff to the highest point. From Eq. (3.6) this height
is (v2/2g) sin2 θ. But the ball is traveling so fast (assuming h is large) during this last stage of
the motion that it takes a negligible time to fall through the last (v2/2g) sin2 θ interval and hit the
ground. The speed is essentially gt = g

√
2h/g =

√
2gh at this point, so the additional time is
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approximately (v2/2g) sin2 θ/
√

2gh. You can show by using a Taylor series that the next term in
the approximation to the time in Eq. (3.44) would yield this tiny additional time. (You will want
to factor the 2gh out of the square root, to put it in the standard

√
1 + ϵ form.) Further corrections

from additional terms in the Taylor series correspond to the fact that the speed isn’t constant during
this final tiny time.

3.16. Throwing on stairs

(a) When the ball reaches the corner of the N th step, it has traveled a distance of Nℓ both
sideways and downward. So if t is the time in the air, then looking at the horizontal
distance gives vt = Nℓ, and looking at the vertical distance gives gt2/2 = Nℓ.
Solving for t in the first of these equations and plugging the result into the second
yields

g

2

(
Nℓ
v

)2

= Nℓ =⇒ v =

√
Nℓg

2
. (3.47)

Limits: Big N , ℓ, or g implies big v, as expected.

(b) As we noted above, the time needed to fall the distance Nℓ to the corner of the N th
step is given by

1
2
gt2

N = Nℓ =⇒ tN =

√
2Nℓ
g
. (3.48)

Likewise, the total time needed to fall to the (N +1)st step is tN+1 =
√

2(N + 1)ℓ/g.
The difference in these times is the time of flight from the N th corner to the (N +1)st
step. So the horizontal distance along the (N+1)st step is (using the result for v from
part (a))

d = v(tN+1 − tN ) =

√
Nℓg

2
*.,
√

2(N + 1)ℓ
g

−
√

2Nℓ
g

+/-
= ℓ

( √
N (N + 1) − N

)
. (3.49)

(c) We need to apply the Taylor series
√

1 + ϵ ≈ 1 + ϵ/2 to the above result for d. If we
take out a factor of

√
N2 from the square root, it will take the requisite

√
1 + ϵ form.

We then have

d = Nℓ *,
√

1 +
1
N
− 1+- ≈ Nℓ

((
1 +

1
2N

)
− 1

)
=
ℓ

2
. (3.50)

(d) The x component of the velocity is (always) vx = v =
√

Nℓg/2. The y component
of the velocity at the corner of the N th step is vy = gtN = g

√
2Nℓ/g =

√
2Nℓg.

The ratio of these components is vy/vx = 2.
This is consistent with the result in part (c), because for large N , the ball is moving
very fast when it grazes the corner, so it travels essentially in a straight line in going
to the next step; there’s basically no time to accelerate and have the trajectory bend.
From part (c), we know that the ball goes down a distance ℓ, and sideways a distance
ℓ/2. These distances imply (in the straight-line-trajectory approximation) that the
ratio of the velocity components is vy/vx = ℓ/(ℓ/2) = 2, in agreement with the ratio
obtained directly from the components calculated at the corner.

Units: Note that this ratio of 2 is independent of ℓ, g, and N . It can’t depend on g due to the
seconds in g’s units. And then it can’t depend on ℓ due to the meters in ℓ’s units. The argument
that eliminates N is a little tricker, but it is short: The ratio of the velocity components can’t
depend on N , because we could simply turn each step into many little ones. N therefore
increases, but the velocity components are the same; the ball has no clue that we subdivided
the steps, so the velocity components can’t change.
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3.17. Bullet and sphere

First solution: If we take the origin to be the center of the sphere, then the projectile
motion is given by

x(t) = v0t and y(t) = R − 1
2
gt2. (3.51)

Plugging the t from the first equation into the second gives

y = R − gx2

2v2
0

. (3.52)

If a point on the sphere (which is a 2-D circle for our purposes) is a distance x to the right
of the center, then by the Pythagorean theorem it is a distance

√
R2 − x2 above the center.

So the y coordinate is y =
√

R2 − x2. Taking the R2 out of the square root and using√
1 + ϵ ≈ 1 + ϵ/2 gives the approximate expression for y as a function of (small) x:

y = R

√
1 − x2

R2 ≈ R
(
1 − x2

2R2

)
= R − x2

2R
. (3.53)

Comparing Eqs. (3.52) and (3.53), we see that the projectile motion matches up with the
circle (at least for small x) if

g

2v2
0

=
1

2R
=⇒ v0 =

√
gR. (3.54)

If v0 takes on this value, you can quickly show that the y value in Eq. (3.52) satisfies
x2 + y2 ≥ R2. That is, the projectile motion always lies outside the circle, which is
intuitively reasonable. So the bullet does indeed avoid touching the sphere if v0 =

√
gR.

The bullet hits the ground when y = −R (because we defined the origin to be the center
of the sphere). Using the expression for y in Eq. (3.52) with v2

0 = gR, we find the desired
distance along the ground to be

R − x2

2R
= −R =⇒ xg = 2R. (3.55)

Units: Note that considerations of units tells us that xg must be proportional to R. In general it
depends on v0, but we’ve specifically chosen v0 to equal

√
gR; and xg can’t depend on g, due to the

seconds in g. But it takes a calculation to show that there is a factor of 2 out front.

Limits: Large R or large g implies large v0, which makes sense. Large R implies large xg, which
also makes sense.

Second solution: A quicker way of finding v0 is to use the fact that the radial acceleration
is given by a = v2/r , where r is the radius of the circle that the parabolic trajectory
instantaneous matches up with. But the acceleration of the bullet is also of course just
g, because it is undergoing freefall projectile motion (assuming that it isn’t touching the
sphere). So if we want the radius of the instantaneous circle to be R, then we need

v2
0

R
= g =⇒ v0 =

√
gR. (3.56)

3.18. Throwing on an inclined plane

(a) If θ is very small (so that the plane is nearly horizontal), then the point P is essentially
at the top of the ball’s parabolic motion. So P is certainly higher than the starting
point.
In the other extreme where θ is close to 90◦ (so that the plane is nearly vertical),
the ball starts out moving essentially horizontally. So all later points in the motion
(including P) are lower than the starting point.
Therefore, by continuity there must exist a θ between 0 and 90◦ for which P has the
same height as the starting point.
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(b) We’ll calculate the special value of θ by finding the time at which the ball returns to
the starting height, and also the time at which the ball is at point P farthest from the
plane. We’ll then set these two times equal to each other.
The ball is thrown at an angle of 90◦ − θ with respect to horizontal, so the vertical
component of the initial velocity is v0 cos θ (as opposed to the usual v0 sin θ). The
time to the top of the parabolic motion is therefore v0 cos θ/g. The time to fall back
down to the initial height is twice this, or 2v0 cos θ/g.
The time to reach the point P farthest from the plane can be found in the following
quick manner, by using tilted axes. The acceleration components parallel and per-
pendicular to the plane are g sin θ and g cos θ, respectively. We aren’t concerned with
the first of these; the motions in the two tilted directions are independent, and we are
concerned only with the motion perpendicular to the plane. The g cos θ acceleration
perpendicular to the plane tells us that the time to reach P equals v0/g cos θ. This
is true because the velocity component perpendicular to the plane at the start is just
v0, while the velocity component perpendicular to the plane at P is zero (by defini-
tion, since P is the farthest point from the plane). Basically, someone living in the
tilted-axis world would think that the acceleration due to gravity is g cos θ “down-
ward” toward the plane, while there is also an additional mysterious force causing an
acceleration of g sin θ “rightward.”
The time to return to the initial height is the same as the time to reach P if

2v0 cos θ
g

=
v0

g cos θ
=⇒ cos2 θ =

1
2
=⇒ θ = 45◦. (3.57)

The corresponding trajectory is sketched in Fig. 3.26. You can show that P is a

θ

P

v0

Figure 3.26

distance v2
0/
√

2g from the plane in this case.

3.19. Ball landing on a block

First solution: Let the initial speed of the block be u, and let the initial speed of the ball
be v. Our strategy will be to (1) equate the times when the ball hits the plane and when
the block reaches its maximum height, and then (2) equate the distances along the plane
at this time.

Since the slope of the plane is tan β, the ball hits the plane when its coordinates satisfy
y/x = tan β. Using y = (v sin θ)t − gt2/2 and x = (v cos θ)t, this becomes

(v sin θ)t − gt2/2
(v cos θ)t

= tan β =⇒ thit =
2v cos θ

g
(tan θ − tan β). (3.58)

The block reaches its maximum height at tmax = u/(g sin β), because the acceleration
downward along the plane is g sin β, so this is the time when the speed is zero. Equating
tmax with thit gives

u
g sin β

=
2v cos θ

g
(tan θ − tan β) =⇒ u = 2v sin β cos θ(tan θ − tan β). (3.59)

Now let’s demand that the distances along the plane are equal at this time. The ball’s
distance along the plane is x/ cos β = (v cos θ)t/ cos β. And the block’s distance is
ut − (g sin β)t2/2, because it undergoes motion with constant acceleration g sin θ pointing
down the plane. Equating these distances, canceling a factor of t, and using t = u/(g sin β)
from above, we obtain

v cos θ
cos β

= u − 1
2

(g sin β)
u

g sin β
=⇒ v cos θ =

u cos β
2
. (3.60)

This makes sense; the constant horizontal speed of the ball (the left-hand side) correctly
equals the average horizontal speed of the block (the right-hand side); the block starts with
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ux = u cos θ and ends up with ux = 0. Plugging the u from Eq. (3.59) into Eq. (3.60) gives

v cos θ = v sin β cos θ(tan θ − tan β) · cos β
=⇒ 1 = sin β cos β(tan θ − tan β)

=⇒ tan θ = tan β +
1

sin β cos β
. (3.61)

This is the desired implicit equation that gives θ in terms of β. If β = 45◦ we have

tan θ = 1 +
1

1
√

2
· 1
√

2

= 3 =⇒ θ ≈ 71.6◦. (3.62)

Limits: If β → 90◦ then Eq. (3.61) gives θ → 90◦; this makes sense because θ must be at least as
large as β. If β → 0 then θ → 90◦; this makes sense because for a given u, the process takes a very
long time in the β → 0 limit (because the block hardly slows down on the plane). So the ball must
spend a very long time in the air. It must therefore be thrown very fast, which means that θ must be
very close to 90◦ so that the horizontal speed is essentially equal to the given speed u.

Second solution: In this solution, we’ll work with axes parallel and perpendicular to the
plane. The objects have the same acceleration along the plane, namely −g sin β. There-
fore, if their initial velocity components along the plane are equal, then these velocity
components will always be equal. And since the objects start at the same place, equal ve-
locity components implies equal positions along the plane. That is, the ball will always be
“above” the block (in the tilted reference frame), which implies that the ball will land on
the block. Since the angle between the ball’s firing angle and the plane is θ − β, equating
the initial velocity components along the plane gives

u = v cos(θ − β). (3.63)

This condition guarantees that the ball will land on the block, but let’s now also demand
that the landing happens when the block reaches its maximum height on the plane. As in
the first solution, the time for the block to reach its maximum height (where it is instanta-
neously at rest) is tmax = u/(g sin β), because g sin β is the (magnitude of the) acceleration
along the plane.

We claim that the time for the ball to return to the plane is thit = 2 · v sin(θ − β)/g cos β.
(You can verify by using the sum formula for sine that this agrees with Eq. (3.58).) This
is true because v sin(θ − β) is the initial velocity perpendicular to the plane, and g cos β
is the (magnitude of the) acceleration perpendicular to the plane. We effectively live in
a tilted world where gravity has strength g′ = g cos β in the “upward” (tilted) direction,
so the time to the “top” of the motion is the standard vy′/g

′, where vy′ = v sin(θ − β) is
the initial “upward” velocity. The total time is twice this; hence the above expression for
thit. There is also a mysterious “sideways” acceleration g sin β along the plane in our tilted
world, but this doesn’t come into play when calculating the time to return to the plane.

We want tmax and thit to be equal:

tmax = thit =⇒
u

g sin β
=

2v sin(θ − β)
g cos β

. (3.64)

Substituting the u from Eq. (3.63) into Eq. (3.64) gives

v cos(θ − β)
g sin β

=
2v sin(θ − β)

g cos β
=⇒ 1 = 2 tan(θ − β) tan β. (3.65)

You can use the sum formula for tan to verify that this leads to the same value of tan θ we
found in Eq. (3.61).



66 CHAPTER 3. KINEMATICS IN 2-D (AND 3-D)

3.20. g’s in a washer

1000 revolutions per minute equals 16.7 revolutions per second. A point on the surface
of the drum moves a distance of 2πr = 2π(0.3 m) = 1.88 m during one revolution, so the
speed of such a point is v = (1.88 m)(16.7 s−1) ≈ 31.4 m/s. The radial acceleration is
therefore ar = v2/r = (31.4 m/s)2/(0.3 m) = 3300 m/s2. Since one g is about 10 m/s2,
this acceleration is equivalent to about 330 g’s. That’s huge!

Remark: Since 31.4 m/s equals about 70 miles per hour, the results in this problem carry over to the
spinning wheels on a car moving at a good highway clip. Note that it is irrelevant that the center of
the wheel is moving down the road, as opposed to remaining stationary like the washing machine.
In the reference frame moving along with the car, the wheel is simply spinning in place, so we have
the same setup as with the washing machine. Adding on the constant velocity of the car to transform
to the reference frame of the ground doesn’t affect the acceleration of a point on the rim, because the
derivative of a constant velocity is zero.

3.21. Acceleration after one revolution

The tangential acceleration is always at, and the radial acceleration is v2/R. So our goal
is to find the value of v after one revolution. The time it takes to complete one revolution
is given by att2/2 = 2πR =⇒ t =

√
4πR/at. The speed after one revolution is therefore

v = att =
√

4πRat. (This also follows from the standard v =
√

2ad kinematic result.)
The radial acceleration is then ar = v2/R = 4πat, which is more than 12 times at (a
surprisingly large factor). The angle that the acceleration vector a makes with the radial
direction is given by tan θ = at/ar = at/(4πat) = 1/4π. This angle is about 4.5◦, which
means that a points only slightly away from the radial direction.

The angle doesn’t depend on at or R, because an angle is a dimensionless quantity, and it
is impossible to form a dimensionless quantity from at (which has units of m/s2) and R
(which has units of m).

Remark: The angle θ that a makes with the radial direction starts off at 90◦ (when v = 0 =⇒ ar = 0)
and approaches zero after a long time (when v → ∞ =⇒ ar → ∞). From the above reasoning, you
can show that the general result for θ is tan θ = R/2d, where d is the distance traveled around the
circle. The angle that a makes with the radial direction therefore equals, for example, 45◦ when the
car has traveled a distance d = R/2, which corresponds to 28.6◦ around the circle (half of a radian).

3.22. Equal acceleration components

(a) The acceleration components are ar = v2/R and at = dv/dt. We are told that
|dv/dt | = v2/R. Let’s assume for now that dv/dt is positive (so that the object is
speeding up), in which case we can ignore the absolute value operation. Separating
variables in dv/dt = v2/R and integrating gives

∫ v

v0

dv′

v′2
=

∫ t

0

dt ′

R
=⇒ −1

v

�����
v

v0

=
t
R

=⇒ 1
v0
− 1
v
=

t
R
=⇒ v(t) =

1
1
v0
− t

R

. (3.66)

If dv/dt were negative (so that the object were slowing down), then |dv/dt | would
be equal to −dv/dt. The negative sign would carry through the above calculation,
and we would end up with v(t) = 1/(1/v0 + t/R).

The distance (arclength) traveled, s, equals the integral of v. That is, s =
∫
v dt.
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Assuming that dv/dt is positive, this gives

s(t) =
∫ t

0

dt
1
v0
− t

R

= −R ln
(

1
v0
− t

R

) �����
t

0

= −R
[
ln

(
1
v0
− t

R

)
− ln

(
1
v0

)]
= −R ln

(
1/v0 − t/R

1/v0

)
= −R ln

(
1 − v0t

R

)
. (3.67)

If dv/dt is negative, the distance comes out to be s(t) = R ln(1 + v0t/R).

Limits: Using the Taylor approximation ln(1 − ϵ ) ≈ −ϵ , we find that if t is small then s(t) for
the dv/dt > 0 case behaves like s(t) ≈ −R(−v0t/R) = v0t. This is correct, because the object
hasn’t had any time to change its speed. The s(t) for the dv/dt < 0 case also correctly reduces
to v0t.

(b) In the case where dv/dt is positive, the special value of t is T = R/v0. At this time,
both the v in Eq. (3.66) and the s in Eq. (3.67) go to infinity. After this time, the
stated motion is impossible.
In the case where dv/dt is negative, v goes to zero as t → ∞. But it goes to zero
slowly enough so that the distance s diverges (slowly, like a log) as t → ∞.

Limits: Small v0 implies large T , and large R also implies large T . These make intuitive sense.

3.23. Horizontal acceleration

Let θ be the angular position below the horizontal. Then the height fallen is R + R sin θ,
which gives a speed of v =

√
2gh =

√
2gR(1 + sin θ). The radial acceleration is then ar =

v2/R = 2g(1 + sin θ). The tangential acceleration comes from the tangential component
of gravity, so it is simply at = g cos θ. The total acceleration is horizontal if the vertical
components of ar and at cancel, as shown in Fig. 3.27.2 These two vertical components

θ

θ

cancel at

ar

Figure 3.27

are ar sin θ upward and at cos θ downward. So we want

ar sin θ = at cos θ
=⇒ 2g(1 + sin θ) · sin θ = g cos θ · cos θ

=⇒ 2 sin θ + 2 sin2 θ = cos2 θ

=⇒ 2 sin θ + 2 sin2 θ = 1 − sin2 θ

=⇒ 3 sin2 θ + 2 sin θ − 1 = 0
=⇒ (3 sin θ − 1)(sin θ + 1) = 0

=⇒ sin θ =
1
3
, (3.68)

which gives θ ≈ 19.5◦ or θ ≈ 160.5◦. The positions corresponding to these two angles are
shown in Fig. 3.28. 19.5

Figure 3.28

There is also another root of the above quadratic equation, namely sin θ = −1 =⇒ θ =
−90◦. This corresponds to the top of the hoop, where ar = at = 0. So the acceleration
does indeed have a zero vertical component there. But it’s semantics as to whether or not
the zero vector is “horizontal.”

You can also solve this problem by considering the forces on the bead; see Problem 5.22.

2A common mistake is to say that the vertical component of ar should cancel the downward acceleration g due to
gravity. This isn’t correct, because part of the gravitational force (the radial component) is already “included” in the
radial acceleration. So you’d be double counting this component of gravity.


